Difference between revisions of "Relationship between csch and csc"
From specialfunctionswiki
Line 2: | Line 2: | ||
The following formula holds: | The following formula holds: | ||
$$\mathrm{csch}(z)=i \csc(iz),$$ | $$\mathrm{csch}(z)=i \csc(iz),$$ | ||
− | where $\csch$ denotes the [[csch|hyperbolic cosecant]] and $\csc$ denotes the [[cosecant]]. | + | where $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]] and $\csc$ denotes the [[cosecant]]. |
==Proof== | ==Proof== |
Revision as of 22:05, 21 June 2016
Theorem
The following formula holds: $$\mathrm{csch}(z)=i \csc(iz),$$ where $\mathrm{csch}$ denotes the hyperbolic cosecant and $\csc$ denotes the cosecant.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 4.5.10