Difference between revisions of "Relationship between csch and csc"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$\mathrm{csch}(z)=i \csc(iz),$$
 
$$\mathrm{csch}(z)=i \csc(iz),$$
where $\csch$ denotes the [[csch|hyperbolic cosecant]] and $\csc$ denotes the [[cosecant]].
+
where $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]] and $\csc$ denotes the [[cosecant]].
  
 
==Proof==
 
==Proof==

Revision as of 22:05, 21 June 2016

Theorem

The following formula holds: $$\mathrm{csch}(z)=i \csc(iz),$$ where $\mathrm{csch}$ denotes the hyperbolic cosecant and $\csc$ denotes the cosecant.

Proof

References