Difference between revisions of "Dirichlet eta"
From specialfunctionswiki
Line 1: | Line 1: | ||
Let $\mathrm{Re} \hspace{2pt} z > 0$, then define | Let $\mathrm{Re} \hspace{2pt} z > 0$, then define | ||
$$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ | $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ | ||
− | |||
<div align="center"> | <div align="center"> |
Revision as of 19:49, 23 June 2016
Let $\mathrm{Re} \hspace{2pt} z > 0$, then define $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$
Domain coloring of $\eta$.