Difference between revisions of "Airy zeta function"
From specialfunctionswiki
Line 3: | Line 3: | ||
=Properties= | =Properties= | ||
− | + | [[Airy zeta function at 2]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
=References= | =References= |
Revision as of 17:13, 24 June 2016
The Airy function $\mathrm{Ai}$ is oscillatory for negative values of $x$. This yields a sequence of zeros $\{a_i\}_{i=1}^{\infty}$. We define the Airy zeta function using these zeros in the following way: $$\zeta_{\mathrm{Ai}}(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{|a_k|^z}.$$
Properties
References
Airy zeta function (Wikipedia)
Airy zeta function (Mathworld)