Difference between revisions of "Sech"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
The hyperbolic secant function $\mathrm{sech} \colon \mathbb{R} \rightarrow (0,1]$ is defined by
 
The hyperbolic secant function $\mathrm{sech} \colon \mathbb{R} \rightarrow (0,1]$ is defined by
$$\mathrm{sech}(z)=\dfrac{1}{\cosh(z)}.$$
+
$$\mathrm{sech}(z)=\dfrac{1}{\cosh(z)},$$
Since this function is not [[one-to-one]], we define the [[arcsech|inverse hyperbolic secant function]] as the [[inverse function]] of $\mathrm{sech}$ restricted to $[0,\infty)$.
+
where $\cosh(z)$ denotes the [[cosh|hyperbolic cosine]]. Since this function is not [[one-to-one]], we define the [[arcsech|inverse hyperbolic secant function]] as the [[inverse function]] of $\mathrm{sech}$ restricted to $[0,\infty)$.
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>

Revision as of 22:58, 24 June 2016

The hyperbolic secant function $\mathrm{sech} \colon \mathbb{R} \rightarrow (0,1]$ is defined by $$\mathrm{sech}(z)=\dfrac{1}{\cosh(z)},$$ where $\cosh(z)$ denotes the hyperbolic cosine. Since this function is not one-to-one, we define the inverse hyperbolic secant function as the inverse function of $\mathrm{sech}$ restricted to $[0,\infty)$.

Properties

Derivative of sech
Antiderivative of sech
Relationship between cosine, Gudermannian, and sech
Relationship between sech, inverse Gudermannian, and cos

See Also

Arcsech

References

<center>Hyperbolic trigonometric functions
</center>