Difference between revisions of "Hypergeometric 2F1"
From specialfunctionswiki
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
+ | [[Limit of (1/Gamma(c))*2F1(a,b;c;z) as c approaches -m]]<br /> | ||
+ | [[2F1(1,1;2;z)=-log(1-z)/z]]<br /> | ||
+ | [[2F1(1/2,1;3/2;z^2)=log((1+z)/(1-z))/(2z)]]<br /> | ||
+ | [[2F1(1/2,1;3/2;-z^2)=arctan(z)/z]]<br /> | ||
+ | [[2F1(1/2,1/2;3/2;z^2)=arcsin(z)/z]]<br /> | ||
=References= | =References= |
Revision as of 21:23, 26 June 2016
The (Gauss) hypergeometric ${}_2F_1$ function (often written simply as $F$) is defined by the series $${}_2F_1(a,b;c;z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(a)_k (b)_k}{(c)_k} \dfrac{z^k}{k!},$$ where $(a)_k$ denotes the Pochhammer symbol.
Properties
Limit of (1/Gamma(c))*2F1(a,b;c;z) as c approaches -m
2F1(1,1;2;z)=-log(1-z)/z
2F1(1/2,1;3/2;z^2)=log((1+z)/(1-z))/(2z)
2F1(1/2,1;3/2;-z^2)=arctan(z)/z
2F1(1/2,1/2;3/2;z^2)=arcsin(z)/z
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 15.1.1