Difference between revisions of "Q-Euler formula for E sub q"

From specialfunctionswiki
Jump to: navigation, search
 
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$
 
$$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$
where $E_q$ is the [[q-exponential E|$q$-exponential $E$]], $\mathrm{Cos}_q$ is the [[q-Cos|$q$-$\mathrm{Cos}$]] function and $\mathrm{Sin}_q$ is the [[q-Sin|$q$-$\mathrm{Sin}$]] function.
+
where $E_q$ is the [[q-exponential E sub q|$q$-exponential $E_q$]], $\mathrm{Cos}_q$ is the [[q-Cos|$q$-$\mathrm{Cos}$]] function and $\mathrm{Sin}_q$ is the [[q-Sin|$q$-$\mathrm{Sin}$]] function.
  
 
==Proof==
 
==Proof==

Latest revision as of 23:10, 26 June 2016

Theorem

The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ where $E_q$ is the $q$-exponential $E_q$, $\mathrm{Cos}_q$ is the $q$-$\mathrm{Cos}$ function and $\mathrm{Sin}_q$ is the $q$-$\mathrm{Sin}$ function.

Proof

References