Difference between revisions of "Integral of Bessel J for nu=n+1"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for $n>0$: $$\displaystyle\int_0^z J_{n+1}(t) \mathrm{d}t = \displaystyle\int_0^z J_{n-1}(t) \mathrm{d}t - 2J_n(z),$$ where $J_{n+1}$ d...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral of Bessel J for nu=2n+1|next=}}: $11.1.5$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral of Bessel J for nu=2n+1|next=Integral of Bessel J for nu=1}}: $11.1.5$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 17:01, 27 June 2016

Theorem

The following formula holds for $n>0$: $$\displaystyle\int_0^z J_{n+1}(t) \mathrm{d}t = \displaystyle\int_0^z J_{n-1}(t) \mathrm{d}t - 2J_n(z),$$ where $J_{n+1}$ denotes the Bessel function of the first kind.

Proof

References