Difference between revisions of "Real and imaginary parts of log"
From specialfunctionswiki
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithm|next=Polar coordinates}}: 4.1.2 | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithm|next=Polar coordinates}}: $4.1.2$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 17:23, 27 June 2016
Theorem
Write $z \in \mathbb{C}$ using polar coordinates: $z=x+iy=re^{i\theta}$. The following formula holds for $-\pi < \mathrm{arg}(z) \leq \pi$: $$\log(z)=\log(r)+i\theta,$$ where $\mathrm{arg}$ denotes the argument and $\log$ denotes the logarithm.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.1.2$