Difference between revisions of "Asymptotic formula for partition function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following asymptotic formula holds: $$p(n) \sim \dfrac{1}{4n\sqrt{3}} \exp \left( \pi \sqrt{ \dfrac{2}{3} } \sqrt{n} \right),$$ where $p$ denotes the partiti...")
 
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
The following asymptotic formula holds:
+
The following [[asymptotic formula]] holds:
 
$$p(n) \sim \dfrac{1}{4n\sqrt{3}} \exp \left( \pi \sqrt{ \dfrac{2}{3} } \sqrt{n} \right),$$
 
$$p(n) \sim \dfrac{1}{4n\sqrt{3}} \exp \left( \pi \sqrt{ \dfrac{2}{3} } \sqrt{n} \right),$$
 
where $p$ denotes the [[partition]] function, $\exp$ denotes the [[exponential]], and $\pi$ denotes [[pi]].
 
where $p$ denotes the [[partition]] function, $\exp$ denotes the [[exponential]], and $\pi$ denotes [[pi]].

Latest revision as of 00:10, 28 June 2016

Theorem

The following asymptotic formula holds: $$p(n) \sim \dfrac{1}{4n\sqrt{3}} \exp \left( \pi \sqrt{ \dfrac{2}{3} } \sqrt{n} \right),$$ where $p$ denotes the partition function, $\exp$ denotes the exponential, and $\pi$ denotes pi.

Proof

References