Difference between revisions of "Jacobi cd"
From specialfunctionswiki
(Created page with "The $\mathrm{cd}$ function is defined by $$\mathrm{cd}(u)=\dfrac{\mathrm{cn}(u)}{\mathrm{dn}(u)},$$ where $\mathrm{cn}$ is the Jacobi cn function and $\mathrm{dn}$ is the...") |
|||
(6 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
$$\mathrm{cd}(u)=\dfrac{\mathrm{cn}(u)}{\mathrm{dn}(u)},$$ | $$\mathrm{cd}(u)=\dfrac{\mathrm{cn}(u)}{\mathrm{dn}(u)},$$ | ||
where $\mathrm{cn}$ is the [[Jacobi cn]] function and $\mathrm{dn}$ is the [[Jacobi dn]] function. | where $\mathrm{cn}$ is the [[Jacobi cn]] function and $\mathrm{dn}$ is the [[Jacobi dn]] function. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Complexjacobicd,m=0.8plot.png|[[Domain coloring]] of $\mathrm{cd}$ corresponding to $m=0.8$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | =References= | ||
+ | [http://web.mst.edu/~lmhall/SPFNS/spfns.pdf Special functions by Leon Hall] | ||
+ | |||
+ | {{:Jacobi elliptic functions footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 19:06, 5 July 2016
The $\mathrm{cd}$ function is defined by $$\mathrm{cd}(u)=\dfrac{\mathrm{cn}(u)}{\mathrm{dn}(u)},$$ where $\mathrm{cn}$ is the Jacobi cn function and $\mathrm{dn}$ is the Jacobi dn function.
Domain coloring of $\mathrm{cd}$ corresponding to $m=0.8$.
References
Special functions by Leon Hall