Difference between revisions of "Jacobi dc"

From specialfunctionswiki
Jump to: navigation, search
 
(6 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
$$\mathrm{dc}(u)=\dfrac{\mathrm{dn}(u)}{\mathrm{cn}(u)},$$
 
$$\mathrm{dc}(u)=\dfrac{\mathrm{dn}(u)}{\mathrm{cn}(u)},$$
 
where $\mathrm{dn}$ is the [[Jacobi dn]] function and $\mathrm{cn}$ is the [[Jacobi cn]] function.
 
where $\mathrm{dn}$ is the [[Jacobi dn]] function and $\mathrm{cn}$ is the [[Jacobi cn]] function.
 +
 +
<div align="center">
 +
<gallery>
 +
File:Complexjacobidc,m=0.8plot.png|[[Domain coloring]] of $\mathrm{dc}$ with $m=0.8$.
 +
</gallery>
 +
</div>
  
 
=References=
 
=References=
 
[http://web.mst.edu/~lmhall/SPFNS/spfns.pdf Special functions by Leon Hall]
 
[http://web.mst.edu/~lmhall/SPFNS/spfns.pdf Special functions by Leon Hall]
 +
 +
{{:Jacobi elliptic functions footer}}
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 19:06, 5 July 2016

The $\mathrm{dc}$ function is defined by $$\mathrm{dc}(u)=\dfrac{\mathrm{dn}(u)}{\mathrm{cn}(u)},$$ where $\mathrm{dn}$ is the Jacobi dn function and $\mathrm{cn}$ is the Jacobi cn function.

References

Special functions by Leon Hall

Jacobi Elliptic Functions