Difference between revisions of "Jacobi ds"
From specialfunctionswiki
(5 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
$$\mathrm{ds}(u)=\dfrac{\mathrm{dn}(u)}{\mathrm{sn}(u)},$$ | $$\mathrm{ds}(u)=\dfrac{\mathrm{dn}(u)}{\mathrm{sn}(u)},$$ | ||
where $\mathrm{dn}$ is the [[Jacobi dn]] function and $\mathrm{sn}$ is the [[Jacobi sn]] function. | where $\mathrm{dn}$ is the [[Jacobi dn]] function and $\mathrm{sn}$ is the [[Jacobi sn]] function. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Complexjacobids,m=0.8plot.png|[[Domain coloring]] of $\mathrm{ds}$ corresponding to $m=0.8$. | ||
+ | </gallery> | ||
+ | </div> | ||
=References= | =References= | ||
[http://web.mst.edu/~lmhall/SPFNS/spfns.pdf Special functions by Leon Hall] | [http://web.mst.edu/~lmhall/SPFNS/spfns.pdf Special functions by Leon Hall] | ||
+ | |||
+ | {{:Jacobi elliptic functions footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 19:07, 5 July 2016
The $\mathrm{ds}$ function is defined by $$\mathrm{ds}(u)=\dfrac{\mathrm{dn}(u)}{\mathrm{sn}(u)},$$ where $\mathrm{dn}$ is the Jacobi dn function and $\mathrm{sn}$ is the Jacobi sn function.
Domain coloring of $\mathrm{ds}$ corresponding to $m=0.8$.
References
Special functions by Leon Hall