Difference between revisions of "Jacobi ns"
From specialfunctionswiki
(5 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
$$\mathrm{ns}(u)=\dfrac{1}{\mathrm{sn}(u)},$$ | $$\mathrm{ns}(u)=\dfrac{1}{\mathrm{sn}(u)},$$ | ||
where $\mathrm{sn}$ denotes the [[Jacobi sn]] function. | where $\mathrm{sn}$ denotes the [[Jacobi sn]] function. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Complexjacobins,m=0.8plot.png|[[Domain coloring]] of $\mathrm{ns}$ corresponding to $m=0.8$. | ||
+ | </gallery> | ||
+ | </div> | ||
=References= | =References= | ||
[http://web.mst.edu/~lmhall/SPFNS/spfns.pdf Special functions by Leon Hall] | [http://web.mst.edu/~lmhall/SPFNS/spfns.pdf Special functions by Leon Hall] | ||
+ | |||
+ | {{:Jacobi elliptic functions footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 19:07, 5 July 2016
The $\mathrm{ns}$ function is defined by $$\mathrm{ns}(u)=\dfrac{1}{\mathrm{sn}(u)},$$ where $\mathrm{sn}$ denotes the Jacobi sn function.
Domain coloring of $\mathrm{ns}$ corresponding to $m=0.8$.
References
Special functions by Leon Hall