Difference between revisions of "Polylogarithm"

From specialfunctionswiki
Jump to: navigation, search
Line 9: Line 9:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
=Properties=
 +
[[Lerch transcendent polylogarithm]]<br />
 +
[[Legendre chi in terms of polylogarithm]]<br />
  
 
=Videos=
 
=Videos=
 
[https://www.youtube.com/watch?v=6v60ivoC2z8 polylogarithm function]
 
[https://www.youtube.com/watch?v=6v60ivoC2z8 polylogarithm function]
  
=Properties=
+
=References=
[[Lerch transcendent polylogarithm]]<br />
 
[[Legendre chi in terms of polylogarithm]]<br />
 
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 04:23, 7 July 2016

The polylogarithm $\mathrm{Li}_s$ is defined by the formula for $|z|<1$ by $$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$ A special case of the polylogarithm with $s=2$ is called a dilogarithm.

Properties

Lerch transcendent polylogarithm
Legendre chi in terms of polylogarithm

Videos

polylogarithm function

References