Difference between revisions of "Binomial coefficient"
Line 14: | Line 14: | ||
=Properties= | =Properties= | ||
[[Binomial theorem]]<br /> | [[Binomial theorem]]<br /> | ||
+ | [[Binomial series]]<br /> | ||
[[Binomial coefficient (n choose k) equals (n choose (n-k))]]<br /> | [[Binomial coefficient (n choose k) equals (n choose (n-k))]]<br /> | ||
[[Binomial coefficient (n choose k) equals (-1)^k ((k-n-1) choose k)]]<br /> | [[Binomial coefficient (n choose k) equals (-1)^k ((k-n-1) choose k)]]<br /> |
Revision as of 14:29, 9 August 2016
The binomial coefficient ${n \choose k}$ are defined for positive integers $n$ and $k$ by the formula $${n \choose k} = \dfrac{n!}{(n-k)!k!}.$$ More generally, if $\alpha \in \mathbb{C}$ we define the binomial coefficient by $${\alpha \choose k} = \dfrac{\alpha^{\underline{k}}}{k!},$$ where $\alpha^{\underline{k}}$ denotes the falling factorial.
Properties
Binomial theorem
Binomial series
Binomial coefficient (n choose k) equals (n choose (n-k))
Binomial coefficient (n choose k) equals (-1)^k ((k-n-1) choose k)
Binomial coefficient ((n+1) choose k) equals (n choose k) + (n choose (k-1))
Binomial coefficient (n choose 0) equals 1
Binomial coefficient (n choose n) equals 1
Sum over bottom of binomial coefficient with top fixed equals 2^n
Alternating sum over bottom of binomial coefficient with top fixed equals 0
Videos
Pascal's Triangle and the Binomial Coefficients
Example of choose function (Binomial Coefficient)
Binomial coefficients