Difference between revisions of "Binomial series"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for any $\alpha \in \mathbb{C}$: $$(1+x)^{\alpha} = \displaystyle\sum_{k=1}^{\infty} {\alpha \choose k} x^k,$$ where ${\alpha \choose k...")
 
 
Line 2: Line 2:
 
The following formula holds for any $\alpha \in \mathbb{C}$:
 
The following formula holds for any $\alpha \in \mathbb{C}$:
 
$$(1+x)^{\alpha} = \displaystyle\sum_{k=1}^{\infty} {\alpha \choose k} x^k,$$
 
$$(1+x)^{\alpha} = \displaystyle\sum_{k=1}^{\infty} {\alpha \choose k} x^k,$$
where ${\alpha \choose k}$ denotes the [[binomial coefficient]].  
+
where $\displaystyle{\alpha \choose k}$ denotes the [[binomial coefficient]].  
  
 
==Proof==
 
==Proof==

Latest revision as of 12:22, 11 August 2016

Theorem

The following formula holds for any $\alpha \in \mathbb{C}$: $$(1+x)^{\alpha} = \displaystyle\sum_{k=1}^{\infty} {\alpha \choose k} x^k,$$ where $\displaystyle{\alpha \choose k}$ denotes the binomial coefficient.

Proof

References