Difference between revisions of "Meissel-Mertens constant"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Meissel-Mertens constant (also known as Mertens' constant, Kronecker's constant, the Hadamard-de la Vallée-Poussin constant, or prime reciprocal constant) is $$M=\display...")
 
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
$$M=\displaystyle\lim_{n \rightarrow \infty} \left( \displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p} - \log(\log(n)) \right).$$
 
$$M=\displaystyle\lim_{n \rightarrow \infty} \left( \displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p} - \log(\log(n)) \right).$$
 
Note that the sum $\displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p}$ diverges, so this definition resembles that of the [[Euler-Mascheroni constant]].
 
Note that the sum $\displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p}$ diverges, so this definition resembles that of the [[Euler-Mascheroni constant]].
 +
 +
=Properties=
 +
[[Meissel-Mertens constant in terms of the Euler-Mascheroni constant]]
 +
 +
=See Also=
 +
[[Euler-Mascheroni constant]]
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 00:28, 20 August 2016

The Meissel-Mertens constant (also known as Mertens' constant, Kronecker's constant, the Hadamard-de la Vallée-Poussin constant, or prime reciprocal constant) is $$M=\displaystyle\lim_{n \rightarrow \infty} \left( \displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p} - \log(\log(n)) \right).$$ Note that the sum $\displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p}$ diverges, so this definition resembles that of the Euler-Mascheroni constant.

Properties

Meissel-Mertens constant in terms of the Euler-Mascheroni constant

See Also

Euler-Mascheroni constant