Difference between revisions of "Arccoth"
From specialfunctionswiki
Line 1: | Line 1: | ||
+ | The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the [[inverse function]] of the [[coth|hyperbolic cotangent]] function. It may be defined in terms of the [[arctanh|inverse hyperbolic tangent]] function by the following formula: | ||
+ | $$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right).$$ | ||
+ | |||
<div align="center"> | <div align="center"> | ||
<gallery> | <gallery> |
Revision as of 01:33, 16 September 2016
The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the inverse function of the hyperbolic cotangent function. It may be defined in terms of the inverse hyperbolic tangent function by the following formula: $$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right).$$
Domain coloring of $\mathrm{arccoth}$.