Difference between revisions of "Arccoth"
From specialfunctionswiki
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the [[inverse function]] of the [[coth|hyperbolic cotangent]] function. It may be defined by the following formula: | ||
+ | $$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right),$$ | ||
+ | where $\mathrm{arctanh}$ denotes the [[arctanh|inverse hyperbolic tangent]]. | ||
+ | |||
<div align="center"> | <div align="center"> | ||
<gallery> | <gallery> | ||
File:Arccoth.png|Graph of $\mathrm{arccoth}$ on $(-\infty,-1) \bigcup (1,\infty)$. | File:Arccoth.png|Graph of $\mathrm{arccoth}$ on $(-\infty,-1) \bigcup (1,\infty)$. | ||
− | File: | + | File:Complexarccothplot.png|[[Domain coloring]] of $\mathrm{arccoth}$. |
</gallery> | </gallery> | ||
</div> | </div> | ||
− | < | + | ==Properties== |
+ | [[Derivative of arccoth]]<br /> | ||
+ | |||
+ | ==See also== | ||
+ | [[Arccot]] <br /> | ||
+ | [[Cotangent]]<br /> | ||
+ | [[Coth]]<br /> | ||
+ | |||
+ | {{:Inverse hyperbolic trigonometric functions footer}} | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 01:40, 16 September 2016
The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the inverse function of the hyperbolic cotangent function. It may be defined by the following formula: $$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right),$$ where $\mathrm{arctanh}$ denotes the inverse hyperbolic tangent.
Domain coloring of $\mathrm{arccoth}$.