Difference between revisions of "Derivative of inverse error function"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{erf}^{-1}(x)=\dfrac{\sqrt{\pi}}{2}e^{[\mathrm{erf}^{-1}(x)]^2},$$ where $\mathrm{erf}^{-1}$...") |
|||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
The following formula holds: | The following formula holds: | ||
− | $$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{erf}^{-1}(x)=\dfrac{\sqrt{\pi}}{2} | + | $$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{erf}^{-1}(x)=\dfrac{\sqrt{\pi}}{2}\exp \left({[\mathrm{erf}^{-1}(x)]^2} \right),$$ |
− | where $\mathrm{erf}^{-1}$ denotes the [[inverse error function]] and $\ | + | where $\mathrm{erf}^{-1}$ denotes the [[inverse error function]], $\pi$ denotes [[pi]], and $\exp$ denotes the [[exponential]]. |
==Proof== | ==Proof== |
Latest revision as of 04:38, 16 September 2016
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{erf}^{-1}(x)=\dfrac{\sqrt{\pi}}{2}\exp \left({[\mathrm{erf}^{-1}(x)]^2} \right),$$ where $\mathrm{erf}^{-1}$ denotes the inverse error function, $\pi$ denotes pi, and $\exp$ denotes the exponential.