Difference between revisions of "Derivative of inverse error function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{erf}^{-1}(x)=\dfrac{\sqrt{\pi}}{2}e^{[\mathrm{erf}^{-1}(x)]^2},$$ where $\mathrm{erf}^{-1}$...")
 
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{erf}^{-1}(x)=\dfrac{\sqrt{\pi}}{2}e^{[\mathrm{erf}^{-1}(x)]^2},$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{erf}^{-1}(x)=\dfrac{\sqrt{\pi}}{2}\exp \left({[\mathrm{erf}^{-1}(x)]^2} \right),$$
where $\mathrm{erf}^{-1}$ denotes the [[inverse error function]] and $\mathrm{erf}$ denotes the [[error function]].
+
where $\mathrm{erf}^{-1}$ denotes the [[inverse error function]], $\pi$ denotes [[pi]], and $\exp$ denotes the [[exponential]].
  
 
==Proof==
 
==Proof==

Latest revision as of 04:38, 16 September 2016

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{erf}^{-1}(x)=\dfrac{\sqrt{\pi}}{2}\exp \left({[\mathrm{erf}^{-1}(x)]^2} \right),$$ where $\mathrm{erf}^{-1}$ denotes the inverse error function, $\pi$ denotes pi, and $\exp$ denotes the exponential.

Proof

References