Difference between revisions of "Inverse error function"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
(Properties)
Line 10: Line 10:
 
[[Derivative of inverse error function]]<br />
 
[[Derivative of inverse error function]]<br />
 
[[Antiderivative of inverse error function]]<br />
 
[[Antiderivative of inverse error function]]<br />
 
+
[[Integral of inverse erf from 0 to 1]]<br />
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$\displaystyle\int_0^1 \mathrm{erf}^{-1}(x) dx=\dfrac{1}{\sqrt{\pi}}.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">

Revision as of 04:45, 16 September 2016

The inverse error function is the inverse function of the error function. We denote it by writing $\mathrm{erf}^{-1}$.

Properties

Derivative of inverse error function
Antiderivative of inverse error function
Integral of inverse erf from 0 to 1

Theorem: The following formula holds: $$\displaystyle\int_0^1 \log(\mathrm{erf}^{-1}(x)) dx = \left( \dfrac{\gamma}{2} + \log(2) \right),$$ where $\mathrm{erf}^{-1}$ denotes the inverse error function, $\log$ denotes the logarithm, and $\gamma$ denotes the Euler-Mascheroni constant.

Proof:

<center>Error functions
</center>