Difference between revisions of "Inverse error function"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 21: Line 21:
 
</div>
 
</div>
  
<center>{{:Error functions footer}}</center>
+
{{:Error functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 04:47, 16 September 2016

The inverse error function is the inverse function of the error function. We denote it by writing $\mathrm{erf}^{-1}$.

Properties

Derivative of inverse error function
Antiderivative of inverse error function
Integral of inverse erf from 0 to 1

Theorem: The following formula holds: $$\displaystyle\int_0^1 \log(\mathrm{erf}^{-1}(x)) dx = \left( \dfrac{\gamma}{2} + \log(2) \right),$$ where $\mathrm{erf}^{-1}$ denotes the inverse error function, $\log$ denotes the logarithm, and $\gamma$ denotes the Euler-Mascheroni constant.

Proof:

Error functions