Difference between revisions of "Euler product for Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
The following formula holds for $\mathrm{Re}(z)>1$:
 
The following formula holds for $\mathrm{Re}(z)>1$:
 
$$\zeta(z)=\displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$
 
$$\zeta(z)=\displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$
where $\zeta$ is the [[Riemann zeta function]].
+
where $\zeta$ denotes [[Riemann zeta]].
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Riemann zeta|next=Series for log(riemann zeta) over primes}}: § Introduction (2)
+
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Riemann zeta|next=Series for log(riemann zeta) over primes}}: § Introduction $(2)$
* {{BookReference|Higher Transcendental Functions Volume II|1953|Harry Bateman|prev=Riemann zeta|next=}}: pg. $170$
+
* {{BookReference|Higher Transcendental Functions Volume III|1953|Harry Bateman|prev=Riemann zeta|next=Reciprocal Riemann zeta in terms of Mobius}}: pg. $170$
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Riemann zeta|next=}}: $23.2.2$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Riemann zeta|next=findme}}: $23.2.2$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 05:00, 16 September 2016

Theorem

The following formula holds for $\mathrm{Re}(z)>1$: $$\zeta(z)=\displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$ where $\zeta$ denotes Riemann zeta.

Proof

References