Difference between revisions of "Laurent series of the Riemann zeta function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following Laurent series holds: $$\zeta(...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Laurent series of the Riemann zeta function|Theorem]]:</strong> The following [[Laurent series]] holds:
+
The following [[Laurent series]] holds:
 
$$\zeta(z)=\dfrac{1}{z-1} + \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k \lambda_k (z-1)^k}{k!},$$
 
$$\zeta(z)=\dfrac{1}{z-1} + \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k \lambda_k (z-1)^k}{k!},$$
 
where $\zeta$ denotes the [[Riemann zeta]] function and $\lambda_k$ denotes the [[Stieltjes constants]].
 
where $\zeta$ denotes the [[Riemann zeta]] function and $\lambda_k$ denotes the [[Stieltjes constants]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 05:02, 16 September 2016

Theorem

The following Laurent series holds: $$\zeta(z)=\dfrac{1}{z-1} + \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k \lambda_k (z-1)^k}{k!},$$ where $\zeta$ denotes the Riemann zeta function and $\lambda_k$ denotes the Stieltjes constants.

Proof

References