Difference between revisions of "Antiderivative of inverse error function"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$\displaystyle\int \mathrm{erf}^{-1}(x) \mathrm{d}x = -\dfrac{\exp \left( {-[\mathrm{erf}^{-1}(x)]^2} \right) }{\sqrt{\pi}},$$
+
$$\displaystyle\int \mathrm{erf}^{-1}(x) \mathrm{d}x = -\dfrac{\exp \left( {-[\mathrm{erf}^{-1}(x)]^2} \right) }{\sqrt{\pi}}+C,$$
 
where $\mathrm{erf}^{-1}$ denotes the [[inverse error function]], $\exp$ denotes the [[exponential]], and $\pi$ denotes [[pi]].
 
where $\mathrm{erf}^{-1}$ denotes the [[inverse error function]], $\exp$ denotes the [[exponential]], and $\pi$ denotes [[pi]].
  

Latest revision as of 03:48, 3 October 2016

Theorem

The following formula holds: $$\displaystyle\int \mathrm{erf}^{-1}(x) \mathrm{d}x = -\dfrac{\exp \left( {-[\mathrm{erf}^{-1}(x)]^2} \right) }{\sqrt{\pi}}+C,$$ where $\mathrm{erf}^{-1}$ denotes the inverse error function, $\exp$ denotes the exponential, and $\pi$ denotes pi.

Proof

References