Difference between revisions of "Error function is odd"
From specialfunctionswiki
Line 3: | Line 3: | ||
$$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$ | $$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$ | ||
where $\mathrm{erf}$ denotes the [[error function]] (i.e. $\mathrm{erf}$ is an [[odd function]]). | where $\mathrm{erf}$ denotes the [[error function]] (i.e. $\mathrm{erf}$ is an [[odd function]]). | ||
− | + | ||
− | + | ==Proof== | |
− | |||
− | |||
==References== | ==References== | ||
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Erf of conjugate is conjugate of erf}}: 7.1.9 | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Erf of conjugate is conjugate of erf}}: 7.1.9 | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Revision as of 03:53, 3 October 2016
Theorem
The following formula holds: $$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$ where $\mathrm{erf}$ denotes the error function (i.e. $\mathrm{erf}$ is an odd function).
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 7.1.9