Difference between revisions of "Fresnel S"

From specialfunctionswiki
Jump to: navigation, search
(Videos)
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The Fresnel $S$ function is defined by
 
The Fresnel $S$ function is defined by
$$S(x)=\int_0^x \sin(t^2) dt.$$
+
$$S(z)=\int_0^z \sin \left(t^2 \right) \mathrm{d}t.$$
 +
(Note in Abramowitz&Stegun it [http://specialfunctionswiki.org/mirror/abramowitz_and_stegun-1.03/page_300.htm is defined] differently.)
  
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Fresnel.png| Fresnel integrals on $\mathbb{R}$.
+
File:Fresnelsplot.png| Graph of $S$.
File:Domain coloring fresnel s.png | [[Domain coloring]] of [[analytic continuation]] of Fresnel $S$.
+
File:Complexfresnelsplot.png | [[Domain coloring]] of Fresnel $S$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Fresnel S is odd]] <br />
<strong>Theorem:</strong> The following limit is known:
+
[[Taylor series for Fresnel S]]<br />
$$\displaystyle\lim_{x \rightarrow \infty} S(x) = \displaystyle\int_0^{\infty} \sin(t^2)dt = \sqrt{ \dfrac{\pi}{8}}.$$
+
[[Fresnel S in terms of erf]]<br />
<div class="mw-collapsible-content">
+
[[Limiting value of Fresnel S]]<br />
<strong>Proof:</strong>
 
</div>
 
</div>
 
  
 
=See Also=
 
=See Also=
Line 22: Line 20:
  
 
=Videos=
 
=Videos=
[https://www.youtube.com/watch?v=fFZ6BsH99-0 The Fresnel Integral S(x) - How to integrate sin(x^2)]<br />
+
[https://www.youtube.com/watch?v=fFZ6BsH99-0 The Fresnel Integral S(x) - How to integrate sin(x^2) (12 February 2015)]<br />
 +
[https://www.youtube.com/watch?v=H3uOq7VujYA Math and Physics: The Fresnel Integrals (12 May 2016)] <br />
 +
{{:*-integral functions footer}}
  
<center>{{:*-integral functions footer}}</center>
+
[[Category:SpecialFunction]]

Latest revision as of 17:21, 5 October 2016

The Fresnel $S$ function is defined by $$S(z)=\int_0^z \sin \left(t^2 \right) \mathrm{d}t.$$ (Note in Abramowitz&Stegun it is defined differently.)

Properties

Fresnel S is odd
Taylor series for Fresnel S
Fresnel S in terms of erf
Limiting value of Fresnel S

See Also

Fresnel C

Videos

The Fresnel Integral S(x) - How to integrate sin(x^2) (12 February 2015)
Math and Physics: The Fresnel Integrals (12 May 2016)

$\ast$-integral functions