Difference between revisions of "Mertens"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $n \in \mathbb{Z}^+$. Define the Mertens function $$M(n)=\displaystyle\sum_{k=1}^n \mu(k),$$ where $\mu$ is the [Möbius function].")
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Let $n \in \mathbb{Z}^+$. Define the Mertens function
 
Let $n \in \mathbb{Z}^+$. Define the Mertens function
 
$$M(n)=\displaystyle\sum_{k=1}^n \mu(k),$$
 
$$M(n)=\displaystyle\sum_{k=1}^n \mu(k),$$
where $\mu$ is the [Möbius function].
+
where $\mu$ is the [[Möbius function]].
 +
 
 +
<div align="center">
 +
<gallery>
 +
File:Mertensplot,n=0to2000.png|Graph of $M$.
 +
</gallery>
 +
</div>
 +
 
 +
=Properties=
 +
 
 +
=Videos=
 +
[https://www.youtube.com/watch?v=yiyuu9HiXUI Möbius Function - Merten's function (4 September 2007)]<br />
 +
[https://www.youtube.com/watch?v=jjuNYAkPVTY Möbius Function - Merten's conjecture (4 September 2007)]<br />
 +
 
 +
=References=
 +
 
 +
{{:Number theory functions footer}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 17:41, 12 October 2016

Let $n \in \mathbb{Z}^+$. Define the Mertens function $$M(n)=\displaystyle\sum_{k=1}^n \mu(k),$$ where $\mu$ is the Möbius function.

Properties

Videos

Möbius Function - Merten's function (4 September 2007)
Möbius Function - Merten's conjecture (4 September 2007)

References

Number theory functions