Difference between revisions of "Derivative of prime zeta"

From specialfunctionswiki
Jump to: navigation, search
 
Line 5: Line 5:
  
 
==Proof==
 
==Proof==
 +
Recall the definition of the prime zeta function:
 +
$$P(z)=\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} \dfrac{1}{p^z}.$$
 +
Rewrite
 +
$$\dfrac{1}{p^z} = p^{-z} = e^{-z \log(p)}.$$
 +
Differentiate term-by-term using the [[derivative of the exponential function]] and the [[chain rule]]:
 +
$$\begin{array}{ll}
 +
\dfrac{\mathrm{d}}{\mathrm{d}z} P(z) &= \displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} \dfrac{\mathrm{d}}{\mathrm{d}z} \dfrac{1}{p^z} \\
 +
&= \displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} \dfrac{\mathrm{d}}{\mathrm{d}z} e^{-z \log(p)} \\
 +
&= \displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} e^{-z\log(p)} (-\log(p)) \\
 +
&= -\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} \dfrac{\log(p)}{p^z},
 +
\end{array}$$
 +
as was to be shown.
  
 
==References==
 
==References==
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
[[Category:Unproven]]
+
[[Category:Proven]]
 +
[[Category:Justify]]

Latest revision as of 17:46, 19 October 2016

Theorem

The following formula holds: $$P'(z)=-\displaystyle\sum_{p \mathrm{\hspace{2pt} prime}} \dfrac{\log(p)}{p^z},$$ where $P$ denotes the prime zeta function and $\log$ denotes the logarithm.

Proof

Recall the definition of the prime zeta function: $$P(z)=\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} \dfrac{1}{p^z}.$$ Rewrite $$\dfrac{1}{p^z} = p^{-z} = e^{-z \log(p)}.$$ Differentiate term-by-term using the derivative of the exponential function and the chain rule: $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} P(z) &= \displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} \dfrac{\mathrm{d}}{\mathrm{d}z} \dfrac{1}{p^z} \\ &= \displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} \dfrac{\mathrm{d}}{\mathrm{d}z} e^{-z \log(p)} \\ &= \displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} e^{-z\log(p)} (-\log(p)) \\ &= -\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}} \dfrac{\log(p)}{p^z}, \end{array}$$ as was to be shown.

References