Difference between revisions of "Erfi"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The imaginary error function $\mathrm{erfi}$ is defined by $$\mathrm{erfi}(z)=-i\mathrm{erf}(iz),$$ where $\mathrm{erf}$ denotes the error function.")
 
 
(7 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
$$\mathrm{erfi}(z)=-i\mathrm{erf}(iz),$$
 
$$\mathrm{erfi}(z)=-i\mathrm{erf}(iz),$$
 
where $\mathrm{erf}$ denotes the [[error function]].
 
where $\mathrm{erf}$ denotes the [[error function]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Erfiplot.png|Graph of $\mathrm{erfi}$.
 +
File:Complexerfiplot.png|[[Domain coloring]] of $\mathrm{erfi}$.
 +
</gallery>
 +
</div>
 +
 +
=Properties=
 +
[[Derivative of erfi]]<br />
 +
 +
{{:Error functions footer}}
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 23:10, 23 October 2016

The imaginary error function $\mathrm{erfi}$ is defined by $$\mathrm{erfi}(z)=-i\mathrm{erf}(iz),$$ where $\mathrm{erf}$ denotes the error function.

Properties

Derivative of erfi

Error functions