Difference between revisions of "Airy zeta function"
From specialfunctionswiki
(Created page with "The Airy function $\mathrm{Ai}$ is oscillatory for negative values of $x$. This yields a sequence of zeros $\{a_i\}_{i=1}^{\infty}$. We define the Airy ze...") |
|||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The [[Airy | + | The [[Airy Ai | Airy function]] $\mathrm{Ai}$ is oscillatory for negative values of $x$. This yields a sequence of zeros $\{a_i\}_{i=1}^{\infty}$. We define the Airy zeta function using these zeros in the following way: |
$$\zeta_{\mathrm{Ai}}(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{|a_k|^z}.$$ | $$\zeta_{\mathrm{Ai}}(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{|a_k|^z}.$$ | ||
− | + | ||
− | + | =Properties= | |
+ | [[Airy zeta function at 2]]<br /> | ||
+ | |||
=References= | =References= | ||
− | [ | + | * {{PaperReference|On the quantum zeta function|1996|Richard E. Crandall}} |
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 02:16, 2 November 2016
The Airy function $\mathrm{Ai}$ is oscillatory for negative values of $x$. This yields a sequence of zeros $\{a_i\}_{i=1}^{\infty}$. We define the Airy zeta function using these zeros in the following way: $$\zeta_{\mathrm{Ai}}(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{|a_k|^z}.$$