Difference between revisions of "Airy zeta function at 2"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\zeta_{\mathrm{Ai}}(2)=\dfrac{3^{\frac{5}{3}}\Gamma^4(\frac{2}{3})}{4\pi^2},$$ where $\zeta_{\mathrm{Ai}}$ denotes the Airy Ai,...")
 
 
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$\zeta_{\mathrm{Ai}}(2)=\dfrac{3^{\frac{5}{3}}\Gamma^4(\frac{2}{3})}{4\pi^2},$$
 
$$\zeta_{\mathrm{Ai}}(2)=\dfrac{3^{\frac{5}{3}}\Gamma^4(\frac{2}{3})}{4\pi^2},$$
where $\zeta_{\mathrm{Ai}}$ denotes the [[Airy Ai]], $\Gamma$ denotes the [[gamma]] function, and $\pi$ denotes [[pi]].
+
where $\zeta_{\mathrm{Ai}}$ denotes the [[Airy zeta function]], $\Gamma$ denotes the [[gamma]] function, and $\pi$ denotes [[pi]].
  
 
==Proof==
 
==Proof==

Latest revision as of 02:20, 2 November 2016

Theorem

The following formula holds: $$\zeta_{\mathrm{Ai}}(2)=\dfrac{3^{\frac{5}{3}}\Gamma^4(\frac{2}{3})}{4\pi^2},$$ where $\zeta_{\mathrm{Ai}}$ denotes the Airy zeta function, $\Gamma$ denotes the gamma function, and $\pi$ denotes pi.

Proof

References