Difference between revisions of "McCarthy function"
From specialfunctionswiki
(Created page with "The McCarthy function $M$ is defined by $$M(x) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{2^k} g \left( 2^{2^k} x \right),$$ where $$g(x) = \left\{ \begin{array}{ll} 1+x &;...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 9: | Line 9: | ||
=Properties= | =Properties= | ||
− | + | [[McCarthy function is continuous]]<br /> | |
− | + | [[McCarthy function is nowhere differentiable]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
=References= | =References= | ||
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] | [https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 13:39, 17 November 2016
The McCarthy function $M$ is defined by $$M(x) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{2^k} g \left( 2^{2^k} x \right),$$ where $$g(x) = \left\{ \begin{array}{ll} 1+x &; x \in [-2,0] \\ 1-x &; x \in [0,2], \end{array} \right.$$ and $g(x+4)=g(x)$ for any $x \in \mathbb{R}$.
Properties
McCarthy function is continuous
McCarthy function is nowhere differentiable