Difference between revisions of "Arccos"
From specialfunctionswiki
(24 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The function $\mathrm{arccos} \colon | + | __NOTOC__ |
+ | The function $\mathrm{arccos} \colon \mathbb{C} \setminus \{(-\infty,-1) \bigcup (1,\infty) \} \rightarrow \mathbb{C}$ is defined by | ||
+ | $$\rm{arccos}(z)=\dfrac{\pi}{2} + i\log\left( iz + \sqrt{1-z^2} \right),$$ | ||
+ | where $i$ denotes the [[imaginary number]] and $\log$ denotes the [[logarithm]]. | ||
− | [ | + | <div align="center"> |
+ | <gallery> | ||
+ | File:Arccosplot.png|Graph of $\mathrm{arccos}$ on $[-1,1]$. | ||
+ | File:Complexarccosplot.png|[[Domain coloring]] of $\mathrm{arccos}$. | ||
+ | </gallery> | ||
+ | </div> | ||
− | [[ | + | =Properties= |
+ | [[Arccos as inverse cosine]]<br /> | ||
+ | [[Derivative of arccos]]<br /> | ||
+ | [[Antiderivative of arccos]]<br /> | ||
− | = | + | =References= |
− | + | [http://mathworld.wolfram.com/InverseCosine.html Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | =See Also= | |
− | < | + | [[Cosine]] <br /> |
− | + | [[Cosh]] <br /> | |
− | + | [[Arccosh]] | |
− | < | ||
− | |||
− | |||
− | + | {{:Inverse trigonometric functions footer}} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | [[Category:SpecialFunction]] | |
− | [ |
Latest revision as of 20:04, 22 November 2016
The function $\mathrm{arccos} \colon \mathbb{C} \setminus \{(-\infty,-1) \bigcup (1,\infty) \} \rightarrow \mathbb{C}$ is defined by $$\rm{arccos}(z)=\dfrac{\pi}{2} + i\log\left( iz + \sqrt{1-z^2} \right),$$ where $i$ denotes the imaginary number and $\log$ denotes the logarithm.
Domain coloring of $\mathrm{arccos}$.
Properties
Arccos as inverse cosine
Derivative of arccos
Antiderivative of arccos