Difference between revisions of "Arccos"
From specialfunctionswiki
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
− | The function $\mathrm{arccos} \colon | + | The function $\mathrm{arccos} \colon \mathbb{C} \setminus \{(-\infty,-1) \bigcup (1,\infty) \} \rightarrow \mathbb{C}$ is defined by |
+ | $$\rm{arccos}(z)=\dfrac{\pi}{2} + i\log\left( iz + \sqrt{1-z^2} \right),$$ | ||
+ | where $i$ denotes the [[imaginary number]] and $\log$ denotes the [[logarithm]]. | ||
<div align="center"> | <div align="center"> | ||
Line 10: | Line 12: | ||
=Properties= | =Properties= | ||
+ | [[Arccos as inverse cosine]]<br /> | ||
[[Derivative of arccos]]<br /> | [[Derivative of arccos]]<br /> | ||
[[Antiderivative of arccos]]<br /> | [[Antiderivative of arccos]]<br /> | ||
Line 21: | Line 24: | ||
[[Arccosh]] | [[Arccosh]] | ||
− | + | {{:Inverse trigonometric functions footer}} | |
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 20:04, 22 November 2016
The function $\mathrm{arccos} \colon \mathbb{C} \setminus \{(-\infty,-1) \bigcup (1,\infty) \} \rightarrow \mathbb{C}$ is defined by $$\rm{arccos}(z)=\dfrac{\pi}{2} + i\log\left( iz + \sqrt{1-z^2} \right),$$ where $i$ denotes the imaginary number and $\log$ denotes the logarithm.
Domain coloring of $\mathrm{arccos}$.
Properties
Arccos as inverse cosine
Derivative of arccos
Antiderivative of arccos