Difference between revisions of "Dirichlet beta"
From specialfunctionswiki
(Created page with "$$\beta(x) = \displaystyle\sum_{k=0}^{\infty} (-1)^k (2k+1)^{-x} = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$ where $\Phi$ denotes the Lerch transcendent.") |
|||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | $$\beta( | + | __NOTOC__ |
− | + | The Dirichlet $\beta$ function is defined by | |
+ | $$\beta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^z}.$$ | ||
+ | |||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Plot dirichlet beta.png|Graph of $\beta$ on $[-4,4]$. | ||
+ | File:Domain coloring dirichlet beta.png|[[Domain coloring]] of [[analytic continuation]] of $\beta$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | =Properties= | ||
+ | [[Catalan's constant using Dirichlet beta]]<br /> | ||
+ | [[Dirichlet beta in terms of Lerch transcendent]]<br /> | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 00:54, 11 December 2016
The Dirichlet $\beta$ function is defined by $$\beta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^z}.$$
Domain coloring of analytic continuation of $\beta$.
Properties
Catalan's constant using Dirichlet beta
Dirichlet beta in terms of Lerch transcendent