Difference between revisions of "Dirichlet beta"

From specialfunctionswiki
Jump to: navigation, search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
__NOTOC__
 
The Dirichlet $\beta$ function is defined by
 
The Dirichlet $\beta$ function is defined by
$$\beta(x) = \displaystyle\sum_{k=0}^{\infty} (-1)^k (2k+1)^{-x} = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$
+
$$\beta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^z}.$$
where $\Phi$ denotes the [[Lerch transcendent]].
+
 
 +
 
 +
<div align="center">
 +
<gallery>
 +
File:Plot dirichlet beta.png|Graph of $\beta$ on $[-4,4]$.
 +
File:Domain coloring dirichlet beta.png|[[Domain coloring]] of [[analytic continuation]] of $\beta$.
 +
</gallery>
 +
</div>
 +
 
 +
=Properties=
 +
[[Catalan's constant using Dirichlet beta]]<br />
 +
[[Dirichlet beta in terms of Lerch transcendent]]<br />
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 00:54, 11 December 2016

The Dirichlet $\beta$ function is defined by $$\beta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^z}.$$


Properties

Catalan's constant using Dirichlet beta
Dirichlet beta in terms of Lerch transcendent