Difference between revisions of "Dirichlet beta"
From specialfunctionswiki
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | __NOTOC__ | ||
The Dirichlet $\beta$ function is defined by | The Dirichlet $\beta$ function is defined by | ||
− | $$\beta( | + | $$\beta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^z}.$$ |
− | + | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Plot dirichlet beta.png|Graph of $\beta$ on $[-4,4]$. | ||
+ | File:Domain coloring dirichlet beta.png|[[Domain coloring]] of [[analytic continuation]] of $\beta$. | ||
+ | </gallery> | ||
+ | </div> | ||
=Properties= | =Properties= | ||
− | + | [[Catalan's constant using Dirichlet beta]]<br /> | |
+ | [[Dirichlet beta in terms of Lerch transcendent]]<br /> | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 00:54, 11 December 2016
The Dirichlet $\beta$ function is defined by $$\beta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^z}.$$
Domain coloring of analytic continuation of $\beta$.
Properties
Catalan's constant using Dirichlet beta
Dirichlet beta in terms of Lerch transcendent