Difference between revisions of "Dilogarithm"

From specialfunctionswiki
Jump to: navigation, search
Line 19: Line 19:
 
* {{BookReference|Dilogarithms and Associated Functions|1958|Leonard Lewin|next=Taylor series of log(1-z)}}: $(1.1)$
 
* {{BookReference|Dilogarithms and Associated Functions|1958|Leonard Lewin|next=Taylor series of log(1-z)}}: $(1.1)$
 
* {{BookReference|Polylogarithms and Associated Functions|1981|ed=2nd|edpage=Second Edition|Leonard Lewin|next=Taylor series of log(1-z)}}: $(1.1)$
 
* {{BookReference|Polylogarithms and Associated Functions|1981|ed=2nd|edpage=Second Edition|Leonard Lewin|next=Taylor series of log(1-z)}}: $(1.1)$
 +
* {{BookReference|Structural Properties of Polylogarithms|1991|Leonard Lewin|next=Relationship between dilogarithm and log(1-z)/z}}: $(1.1)$
  
 
[http://authors.library.caltech.edu/43491/1/Volume%201.pdf (page 31)]<br />
 
[http://authors.library.caltech.edu/43491/1/Volume%201.pdf (page 31)]<br />

Revision as of 17:41, 11 December 2016

The dilogarithm function $\mathrm{Li}_2$ is defined for $|z| \leq 1$ by $$\mathrm{Li}_2(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{k^2},$$ which is a special case of the polylogarithm.

Properties

Relationship between dilogarithm and log(1-z)/z
Relationship between Li 2(1),Li 2(-1), and pi
Li 2(1)=pi^2/6
Relationship between Li 2(-1/x),Li 2(-x),Li 2(-1), and log^2(x)
Derivative of Li 2(-1/x)

References

(page 31)
The Dilogarithm function
[1]