Difference between revisions of "Q-Pochhammer"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
$$(a;q)_n=\dfrac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}\stackrel{n \in \mathbb{Z}^+}{=} \displaystyle\prod_{j=0}^{n-1} (1-aq^j)$$
+
The $q$-Pochhammer symbol $(a;q)_n$ is defined for $n=0$ by $(a;q)_0=1$, for $n=1,2,3,\ldots$ by the formula
$$(a;q)_{\infty} = \displaystyle\prod_{j=0}^{\infty} (1-aq^j)$$
+
$$(a;q)_n= \displaystyle\prod_{k=0}^{n-1} (1-aq^k),$$
 +
and
 +
$$(a;q)_{-n}=\dfrac{1} {(aq^{-n};q)_n} =\dfrac{1} {(1-aq^{-n})\ldots(1-aq^{-1})} = \dfrac{q^{\frac{n(n+1)}{2}}(-1)^n}{a^n (\frac{q}{a};q)_n}.$$
 +
The notation $(a;q)_{\infty}$ is often encountered and refers to the limit
 +
$$\displaystyle\lim_{n\rightarrow \infty} (a;q)_n=\displaystyle\prod_{k=0}^{\infty} (1-aq^k).$$
  
$$(a;q)_{-n}=\dfrac{1} {(aq^{-n};q)_n} =\dfrac{1} {(1-aq^{-n})\ldots(1-aq^{-1})} = \dfrac{q^{\frac{n(n+1)}{2}}(-1)^n}{a^n (\frac{q}{a};q)_n}$$
 
  
 
=Properties=
 
=Properties=
 +
[[Series for q-Pochhammer]]<br />
 
[[Relationship between q-factorial and q-pochhammer]]<br />
 
[[Relationship between q-factorial and q-pochhammer]]<br />
 
[[Relationship between Euler phi and q-Pochhammer]]<br />
 
[[Relationship between Euler phi and q-Pochhammer]]<br />

Revision as of 19:31, 15 December 2016

The $q$-Pochhammer symbol $(a;q)_n$ is defined for $n=0$ by $(a;q)_0=1$, for $n=1,2,3,\ldots$ by the formula $$(a;q)_n= \displaystyle\prod_{k=0}^{n-1} (1-aq^k),$$ and $$(a;q)_{-n}=\dfrac{1} {(aq^{-n};q)_n} =\dfrac{1} {(1-aq^{-n})\ldots(1-aq^{-1})} = \dfrac{q^{\frac{n(n+1)}{2}}(-1)^n}{a^n (\frac{q}{a};q)_n}.$$ The notation $(a;q)_{\infty}$ is often encountered and refers to the limit $$\displaystyle\lim_{n\rightarrow \infty} (a;q)_n=\displaystyle\prod_{k=0}^{\infty} (1-aq^k).$$


Properties

Series for q-Pochhammer
Relationship between q-factorial and q-pochhammer
Relationship between Euler phi and q-Pochhammer

$q$-calculus