Difference between revisions of "Q-shifted factorial"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The $q$-shifted factorial $(a;q)_n$ is defined by the formula $$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}.$$ =References= Category:SpecialFunction")
 
Line 1: Line 1:
 
The $q$-shifted factorial $(a;q)_n$ is defined by the formula
 
The $q$-shifted factorial $(a;q)_n$ is defined by the formula
$$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}.$$
+
$$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$
  
 
=References=
 
=References=
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 20:55, 18 December 2016

The $q$-shifted factorial $(a;q)_n$ is defined by the formula $$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$

References