Difference between revisions of "Q-shifted factorial"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The $q$-shifted factorial $(a;q)_n$ is defined by the formula
 
The $q$-shifted factorial $(a;q)_n$ is defined by the formula
 
$$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$
 
$$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$
 +
 +
=Properties=
  
 
=References=
 
=References=
* {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=findme|next=findme}} $(10.2.1)$
+
* {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=findme|next=findme}} $(10.2.1)$ (does not specifically say "$q$-shifted factorial")
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 20:57, 18 December 2016

The $q$-shifted factorial $(a;q)_n$ is defined by the formula $$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$

Properties

References