Difference between revisions of "Asymptotic behavior of Sievert integral"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$S(x,\theta) \sim \sqrt{ \dfrac{\pi}{2x} } e^{-x} \mathrm{erf} \left( \sqrt{\dfrac{x}{2}} \theta \right),$$ where $S$ denotes the ...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev= | + | {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Relationship between Sievert integral and exponential integral E}}: $27.4.1$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 02:08, 21 December 2016
Theorem
The following formula holds: $$S(x,\theta) \sim \sqrt{ \dfrac{\pi}{2x} } e^{-x} \mathrm{erf} \left( \sqrt{\dfrac{x}{2}} \theta \right),$$ where $S$ denotes the Sievert integral, $\pi$ denotes pi, $e^{-x}$ denotes the exponential, and $\mathrm{erf}$ denotes the error function.
Proof
References
1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $27.4.1$