Difference between revisions of "Meixner polynomial"
(→Properties) |
|||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | __NOTOC__ | ||
The Meixner polynomials $M_n(x;\beta,c); c \in (0,1)$ are defined by | The Meixner polynomials $M_n(x;\beta,c); c \in (0,1)$ are defined by | ||
$$M_n(x;\beta,c) = {}_2F_1 \left(-n,-x;\beta; 1 - \dfrac{1}{c} \right)$$ | $$M_n(x;\beta,c) = {}_2F_1 \left(-n,-x;\beta; 1 - \dfrac{1}{c} \right)$$ | ||
Line 4: | Line 5: | ||
=Properties= | =Properties= | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>Theorem:</strong> The Meixner polynomials are orthogonal with respect to the inner product | + | <strong>Theorem:</strong> The Meixner polynomials are [[orthogonal]] with respect to the [[inner product]] |
− | $$\langle p,q \rangle = \displaystyle\sum_{k=0}^{\infty} p(k)q(k) \dfrac{\beta^{\overline{k}}}{k!} c^k$$ | + | $$\langle p,q \rangle = \displaystyle\sum_{k=0}^{\infty} p(k)q(k) \dfrac{\beta^{\overline{k}}}{k!} c^k,$$ |
and $\langle M_n(\cdot;\beta,c),M_m(\cdot;\beta,c) \rangle = \dfrac{n! (1-c)^{-\beta}}{c^n \beta^{\overline{n}}} \delta_{mn};\beta>0,0<c<1,$ | and $\langle M_n(\cdot;\beta,c),M_m(\cdot;\beta,c) \rangle = \dfrac{n! (1-c)^{-\beta}}{c^n \beta^{\overline{n}}} \delta_{mn};\beta>0,0<c<1,$ | ||
where $\delta_{mn}$ denotes the [[Dirac delta]] and $\beta^{\overline{k}}$ denotes a [[rising factorial]]. | where $\delta_{mn}$ denotes the [[Dirac delta]] and $\beta^{\overline{k}}$ denotes a [[rising factorial]]. | ||
Line 20: | Line 21: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | [[Rodrigues formula for Meixner polynomial]]<br /> | ||
+ | [[Relationship between Meixner polynomials and Charlier polynomials]]<br /> | ||
+ | |||
+ | =References= | ||
+ | Classical and quantum orthogonal polynomials in one variable - Mourad Ismail | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 02:40, 21 December 2016
The Meixner polynomials $M_n(x;\beta,c); c \in (0,1)$ are defined by $$M_n(x;\beta,c) = {}_2F_1 \left(-n,-x;\beta; 1 - \dfrac{1}{c} \right)$$
Properties
Theorem: The Meixner polynomials are orthogonal with respect to the inner product $$\langle p,q \rangle = \displaystyle\sum_{k=0}^{\infty} p(k)q(k) \dfrac{\beta^{\overline{k}}}{k!} c^k,$$ and $\langle M_n(\cdot;\beta,c),M_m(\cdot;\beta,c) \rangle = \dfrac{n! (1-c)^{-\beta}}{c^n \beta^{\overline{n}}} \delta_{mn};\beta>0,0<c<1,$ where $\delta_{mn}$ denotes the Dirac delta and $\beta^{\overline{k}}$ denotes a rising factorial.
Proof: █
Theorem: The following three-term recurrence holds for Meixner polynomials: $$xM_n(x;\beta,c)=c(\beta+n)(1-c)^{-1}M_{n+1}(x;\beta,c)-[n+c(\beta+n)](1-c)^{-1}M_n(x;\beta,c)+n(1-c)^{-1}M_{n-1}(x;\beta,c).$$
Proof: █
Rodrigues formula for Meixner polynomial
Relationship between Meixner polynomials and Charlier polynomials
References
Classical and quantum orthogonal polynomials in one variable - Mourad Ismail