Difference between revisions of "Relationship between Meixner polynomials and Charlier polynomials"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula hold...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Relationship between Meixner polynomials and Charlier polynomials|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\displaystyle\lim_{\beta \rightarrow \infty} M_n \left(x;\beta,\dfrac{a}{\beta+a} \right) = C_n(x;a),$$
 
$$\displaystyle\lim_{\beta \rightarrow \infty} M_n \left(x;\beta,\dfrac{a}{\beta+a} \right) = C_n(x;a),$$
 
where $M_n$ denotes a [[Meixner polynomial]] and $C_n$ denotes a [[Charlier polynomial]].
 
where $M_n$ denotes a [[Meixner polynomial]] and $C_n$ denotes a [[Charlier polynomial]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 02:40, 21 December 2016

Theorem

The following formula holds: $$\displaystyle\lim_{\beta \rightarrow \infty} M_n \left(x;\beta,\dfrac{a}{\beta+a} \right) = C_n(x;a),$$ where $M_n$ denotes a Meixner polynomial and $C_n$ denotes a Charlier polynomial.

Proof

References