Difference between revisions of "Q-shifted factorial"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The $q$-shifted factorial $(a;q)_n$ is defined by the formula
+
The $q$-shifted factorial $(a;q)_n$ is defined for $a,q \in \mathbb{C}$ by $(a;q)_0=1$ and for $n=1,2,3,\ldots$, by
$$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$
+
$$\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$
  
 
=Properties=
 
=Properties=
Line 6: Line 6:
 
=References=
 
=References=
 
* {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=findme|next=findme}} $(10.2.1)$ (does not specifically say "$q$-shifted factorial")
 
* {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=findme|next=findme}} $(10.2.1)$ (does not specifically say "$q$-shifted factorial")
 +
* {{PaperReference|q-Special functions, a tutorial|1994|Tom H. Koornwinder|prev=findme|next=findme}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 02:54, 21 December 2016

The $q$-shifted factorial $(a;q)_n$ is defined for $a,q \in \mathbb{C}$ by $(a;q)_0=1$ and for $n=1,2,3,\ldots$, by $$\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$

Properties

References