Difference between revisions of "Q-exponential e sub q"

From specialfunctionswiki
Jump to: navigation, search
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
The $q$-exponential $e_q$ is defined by the formula
+
The $q$-exponential $e_q$ is defined for $|z|<1$ by the formula
$$e_q(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!} = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k(1-q)^k}{(q;q)_k}=\displaystyle\sum_{k=0}^{\infty} z^k \dfrac{(1-q)^k}{(1-q^k)(1-q^{k-1})\ldots(1-q)},$$
+
$$e_q(z) =\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(q;q)_k},$$
where $[k]_q!$ denotes the [[q-factorial|$q$-factorial]] and $(q;q)_k$ denotes the [[q-Pochhammer symbol|$q$-Pochhammer symbol]].
+
where $(q;q)_k$ denotes the [[q-shifted factorial]]. Note that this function is different than the [[q-exponential e sub 1/q |$q$-exponential $e_{\frac{1}{q}}$]].
  
 
=Properties=
 
=Properties=
{{:Q-Euler formula for e sub q}}
+
[[Exponential e in terms of basic hypergeometric phi]]
 +
 
 +
[[Q-Euler formula for e sub q]]
 +
 
 +
=References=
 +
* {{PaperReference|q-Special functions, a tutorial|1994|Tom H. Koornwinder|prev=findme|next=findme}}  
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 03:30, 21 December 2016

The $q$-exponential $e_q$ is defined for $|z|<1$ by the formula $$e_q(z) =\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(q;q)_k},$$ where $(q;q)_k$ denotes the q-shifted factorial. Note that this function is different than the $q$-exponential $e_{\frac{1}{q}}$.

Properties

Exponential e in terms of basic hypergeometric phi

Q-Euler formula for e sub q

References