Difference between revisions of "Q-exponential E sub 1/q"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The $E_{\frac{1}{q}}$ function is defined by the formula
 
The $E_{\frac{1}{q}}$ function is defined by the formula
$$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{ {k \choose 2} }}{[k]_q!} z^k.$$
+
$$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{\frac{k(k-1)}{2} }}{[k]_q!} z^k.$$
  
 
=Properties=
 
=Properties=
 +
[[q-exponential E sub q in terms of binomial coefficient]]<br />
 
[[Q-difference equation for q-exponential E sub 1/q]]<br />
 
[[Q-difference equation for q-exponential E sub 1/q]]<br />
  

Revision as of 04:02, 21 December 2016

The $E_{\frac{1}{q}}$ function is defined by the formula $$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{\frac{k(k-1)}{2} }}{[k]_q!} z^k.$$

Properties

q-exponential E sub q in terms of binomial coefficient
Q-difference equation for q-exponential E sub 1/q

See Also

Q-exponential E sub q

References