Difference between revisions of "Derivative of the exponential function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\dfrac{\mathrm{d}}{\ma...")
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Derivative of the exponential function|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} e^z = e^z,$$
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} e^z = e^z,$$
 
where $e^z$ denotes the [[exponential function]].
 
where $e^z$ denotes the [[exponential function]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong>  █
+
==Proof==
</div>
+
By definition,
</div>
+
$$e^z = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{k!}.$$
 +
[[Term-by-term differentiation]] of this sum shows
 +
$$\begin{array}{ll}
 +
\dfrac{\mathrm{d}}{\mathrm{d}z} e^z &= \displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{d}}{\mathrm{d}z} \left[ \dfrac{z^k}{k!} \right] \\
 +
&=\displaystyle\sum_{k=1}^{\infty} \dfrac{z^{k-1}}{(k-1)!} \\
 +
&=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{k!} \\
 +
&=e^z,
 +
\end{array}$$
 +
as was to be shown. █
 +
 
 +
==References==
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=findme}}: 4.2.5
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Proven]]
 +
[[Category:Justify]]

Latest revision as of 00:10, 23 December 2016

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} e^z = e^z,$$ where $e^z$ denotes the exponential function.

Proof

By definition, $$e^z = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{k!}.$$ Term-by-term differentiation of this sum shows $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} e^z &= \displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{d}}{\mathrm{d}z} \left[ \dfrac{z^k}{k!} \right] \\ &=\displaystyle\sum_{k=1}^{\infty} \dfrac{z^{k-1}}{(k-1)!} \\ &=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{k!} \\ &=e^z, \end{array}$$ as was to be shown. █

References