Difference between revisions of "Derivative of the exponential function"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\dfrac{\mathrm{d}}{\ma...") |
|||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\dfrac{\mathrm{d}}{\mathrm{d}z} e^z = e^z,$$ | $$\dfrac{\mathrm{d}}{\mathrm{d}z} e^z = e^z,$$ | ||
where $e^z$ denotes the [[exponential function]]. | where $e^z$ denotes the [[exponential function]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | By definition, | |
− | + | $$e^z = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{k!}.$$ | |
+ | [[Term-by-term differentiation]] of this sum shows | ||
+ | $$\begin{array}{ll} | ||
+ | \dfrac{\mathrm{d}}{\mathrm{d}z} e^z &= \displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{d}}{\mathrm{d}z} \left[ \dfrac{z^k}{k!} \right] \\ | ||
+ | &=\displaystyle\sum_{k=1}^{\infty} \dfrac{z^{k-1}}{(k-1)!} \\ | ||
+ | &=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{k!} \\ | ||
+ | &=e^z, | ||
+ | \end{array}$$ | ||
+ | as was to be shown. █ | ||
+ | |||
+ | ==References== | ||
+ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=findme}}: 4.2.5 | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Proven]] | ||
+ | [[Category:Justify]] |
Latest revision as of 00:10, 23 December 2016
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} e^z = e^z,$$ where $e^z$ denotes the exponential function.
Proof
By definition, $$e^z = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{k!}.$$ Term-by-term differentiation of this sum shows $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} e^z &= \displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{d}}{\mathrm{d}z} \left[ \dfrac{z^k}{k!} \right] \\ &=\displaystyle\sum_{k=1}^{\infty} \dfrac{z^{k-1}}{(k-1)!} \\ &=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{k!} \\ &=e^z, \end{array}$$ as was to be shown. █
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 4.2.5