Difference between revisions of "Bessel-Clifford"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | + | The Bessel-Clifford function $\mathcal{C}_n$ is defined by | |
− | $$\mathcal{C}_n(z)=\displaystyle\sum_{k=0}^{\infty} \ | + | $$\mathcal{C}_n(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{1}{\Gamma(k+n+1)} \dfrac{z^k}{k!},$$ |
+ | where $\Gamma$ denotes the [[gamma]] function | ||
+ | |||
+ | =Properties= | ||
+ | |||
+ | =References= | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 01:02, 23 December 2016
The Bessel-Clifford function $\mathcal{C}_n$ is defined by $$\mathcal{C}_n(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{1}{\Gamma(k+n+1)} \dfrac{z^k}{k!},$$ where $\Gamma$ denotes the gamma function