Difference between revisions of "Bessel-Clifford"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
Let $\pi(x)=\dfrac{1}{\Gamma(x+1)}$, where $\Gamma$ denotes the [[gamma function]]. The Bessel-Clifford function $\mathcal{C}_n$ is defined by
+
The Bessel-Clifford function $\mathcal{C}_n$ is defined by
$$\mathcal{C}_n(z)=\displaystyle\sum_{k=0}^{\infty} \pi(k+n)\dfrac{z^k}{k!}.$$
+
$$\mathcal{C}_n(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{1}{\Gamma(k+n+1)} \dfrac{z^k}{k!},$$
 +
where $\Gamma$ denotes the [[gamma]] function
 +
 
 +
=Properties=
 +
 
 +
=References=
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 01:02, 23 December 2016

The Bessel-Clifford function $\mathcal{C}_n$ is defined by $$\mathcal{C}_n(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{1}{\Gamma(k+n+1)} \dfrac{z^k}{k!},$$ where $\Gamma$ denotes the gamma function

Properties

References